

ERGIS

Technical Review Committee

June 19, 2013

Aaron Bloom

Aaron Townsend, PhD

Disclaimer

 This document is for discussion and development purposes only. Any data or statements contained in this document are subject to revision without notice. Do not cite or quote. Contact aaron.bloom@nrel.gov with any questions.

Goals

 Determine the operational impact of 30% wind and solar penetration on the Eastern Interconnection at a sub-hourly resolution.

 Evaluate the efficacy of mitigation options in managing variability and uncertainty in the electric power system.

The Scenarios

Three scenarios with different wind and solar resources

- State RPS Scenario: ~15% wind
- Regional Scenario: 20% wind, 10% solar
- National Scenario: 25% wind, 5% solar

New addition

- Existing Renewables Scenario: no new renewables
- Findings from WWSIS-2 indicate incremental impact of renewables is higher at low penetrations than high penetrations

Operational Areas of Interest

Reserves

- Types
- Quantities
- Sharing

Commitment and Dispatch

- Day-ahead
- o 4-hour-ahead
- o Real-time

Interchange Efficiency

- o 1-hour
- o 15-minute
- 5-minute

Study Limitations

We lack:

- Bilateral power purchase and other contractual agreement data
- Detailed operational constraints and/or complete unitspecific data in the generation models
- Capability to simultaneously model different dispatch intervals in different balancing authority areas

Uncertainties:

- Future cooperation and/or sub-hourly dispatch across the interconnection
- The amount and location of variable generation
- Transmission system additions
- Generation additions and retirements
- Gas and coal prices

Agenda

Morning

- Working Group Recap
 - Generation
 - Thermal GenerationProperties
 - 2020 Thermal Fleet
 - Canada
 - Ontario
 - Manitoba
 - HQ/Maritimes
- Model Update
 - o 2010 Runs

Afternoon

- Transmission Working Group
 - Transmission Expansion
 - Zones
 - Transmission Monitoring
- Mitigation Working Group
 - Reserves Regions
 - Interchange Scheduling
 - Flex Reserve
 - Other Options
 - Prioritizing
- 3-Month Plan


Working Groups Recap

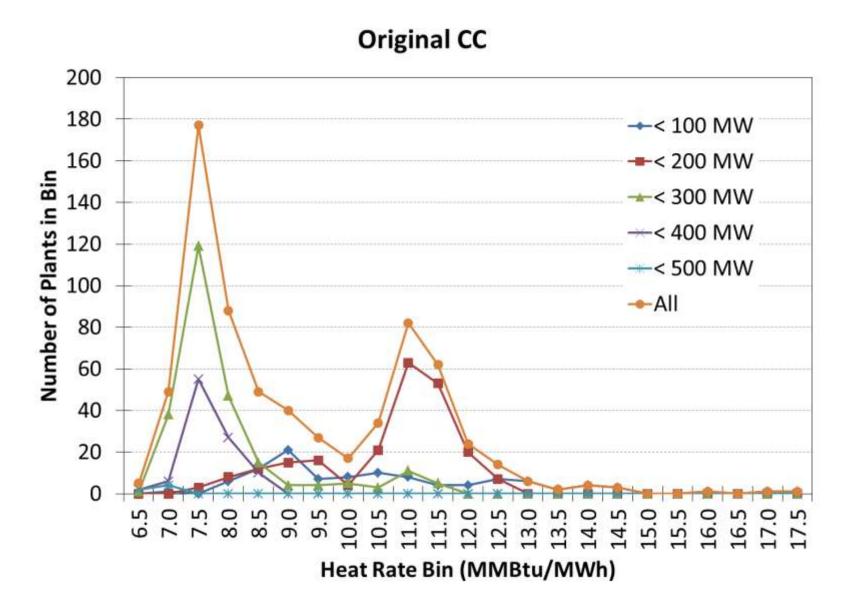
Generation

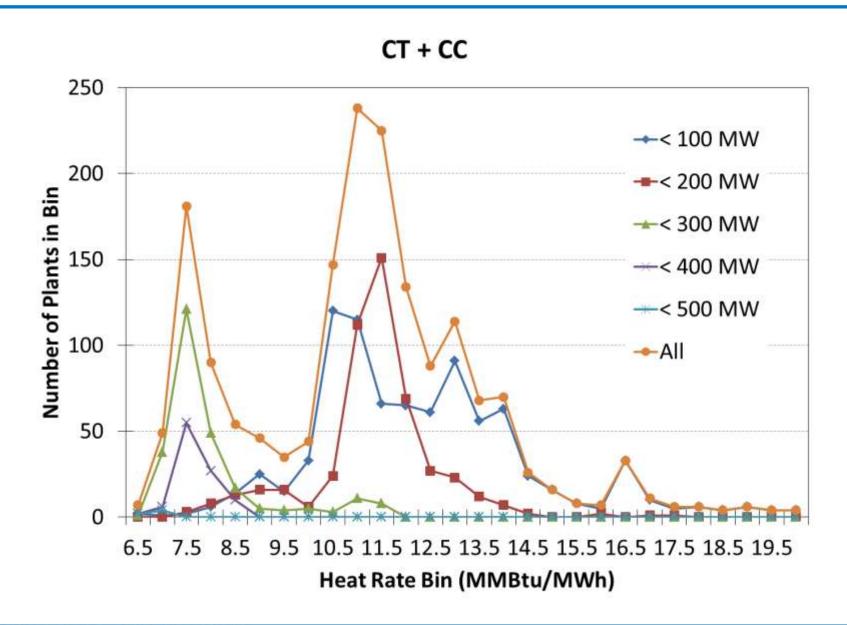
- Thermal fleet properties
- o 2020 thermal fleet
 - Expansion
 - Retirements

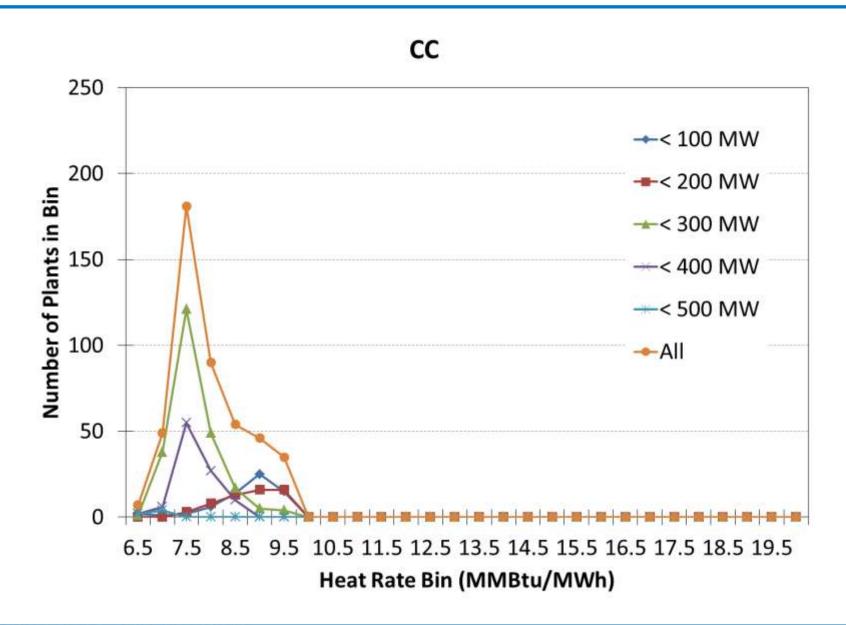
Canada

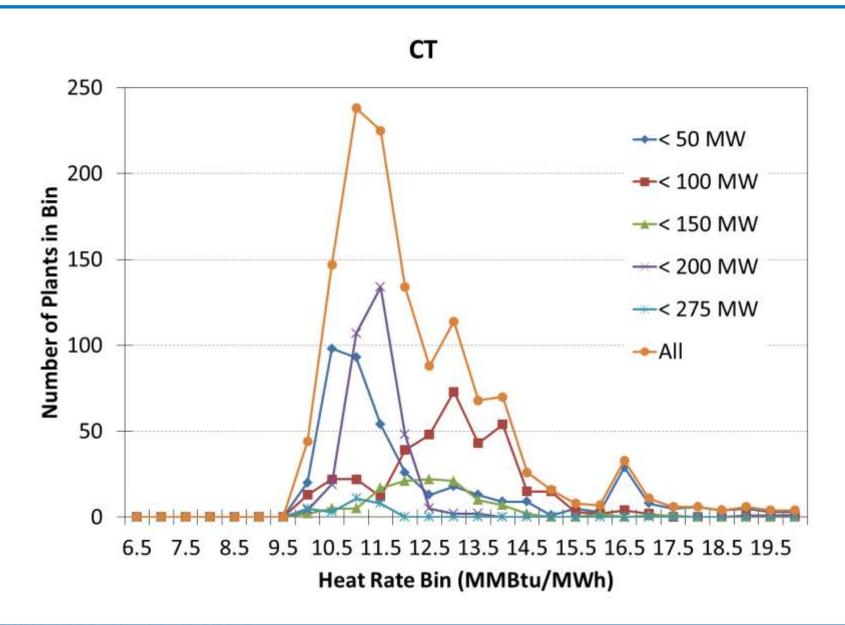
- Ontario
- Manitoba
- HQ-Maritimes

Generation Working Group: April 8


Thermal generation properties


- EIPC assumptions
 - Part-load heat rate shapes
 - Min up/down times
 - Ramp rates
 - Forced and planned outage characteristics
- Non-EIPC assumptions:
 - Unit-specific FLHR from EPA CEMS data
 - Startup and VO&M costs from Intertek APTECH


EIPC Thermal Assumptions


Category	(%	Marginal of Max Capa	Minimum Up Time	Minimum Down Time		
	Step 1	Step 2	Step 3	Step 4	(Hours)	(Hours)
СТ	100% / 100%				1	1
СС	50% / 113%	67%/ 75%	83% / 86%	100% / 100%	6	8
Coal_ST < 600MW	50% / 106%	75%/ 90%	100% / 100%		24	12
Coal_ST > 600MW	30% / 110%	50% / 93%	75% / 95%	100% / 100%	24	12
Oil/Gas_ST < 600MW	30% /110%	50% /90%	75% / 96%	100% / 100%	10	8
Oil/Gas_ST > 600MW	20% / 110%	50% / 95%	75% / 98%	100% / 100%	10	8
Nuclear					168	168

- NREL analyzed EPA CEMS fuel consumption and generation data all major combustion generators
 - Calculated heat rates at several load fractions
- An anomaly was identified with combined cycle and combustion turbine units
 - Differences in reporting output from different cycles leads to bimodal distribution for CCs and CTs

Other Determinations

Unit aggregation:

- All hydro units in the same plant were aggregated
- Thermal units of the same type and at the same plant were aggregated up to 120 MW

Hydro modeling:

- Reservoirs are economically dispatched
- Subject to monthly energy limits (water availability)

What will the 2020 thermal fleet look like?

Turns out, that is an impossible question to answer!

Generation Working Group: April 25

- Cannot determine what the future system WILL look like
- But we can make a guess at the drivers of retirements
 - Natural gas prices
 - EPA regulations
 - Plant age

Trends in Generation Expansion

- Gas combined cycle and combustion turbines
 - Low gas prices
 - Market signals for flexibility

Generation Working Group: April 25

Quantity of Retirements

- Identified a range of estimates for the Eastern Interconnection
- Compared forecasts
 - 2013 EIA AEO
 - Brattle Group
 - o NREL
 - o MISO
 - o EIPC

Plant Selection

- Retire plants based on capacity factor from Plexos iterations
- Analyze upgrade costs based on EPA rules
- Identify a database of unit retirements

Ventyx Planned Retirements by 2020

Ventyx Retirement Methodology

- Unit Specific
- EIA 860 & 411 and Ventyx research
- Lifespan Assumptions
 - GADS category
 - Coal units > 100MW = 75 years
 - Coal < 100MW =65 years</p>
 - Nuclear = 60 years
 - Gas and Other = 55 years.
- Does not include impact of EPA regulations

Ventyx Planned Retirements by 2020

	ISONE	NYISO	РЈМ	MISO	SPP	SERC w/o VACAR	VACAR	FRCC	El-Total
Nuclear	628	0	623	566	0	0	0	877	2,694
Oil/Gas Steam Turbine	1,454	4,165	1,941	834	5,626	3,002	0	1,497	18,519
Coal	203	186	7,956	8,757	2,386	6,485	1,821	1,093	28,886
Gas-CC	0	0	0	0	227	0	0	0	227
Gas-CT	0	406	2,143	284	575	101	0	643	4,151
			·						
								Total	54,478

We agreed plant retirements would be similar across scenarios...

...but, we didn't reach the same conclusion with thermal plant additions

Generation Working Group: April 25

Questions

- Would the mix of combined cycles and combustion turbines be the same across scenarios?
- Should the thermal expansion be constant across scenarios?
- o How does expansion vary across the regions?

Approach

We needed a method that:

- Allowed for the input of announced plant retirements
- Could optimize thermal expansion
- And allowed us to evaluate multiple thermal expansions

Where did these goals lead us?

Back to ReEDS

What is ReEDS?

- Long-term capacity-expansion model created by NREL
- Based on highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary service requirements and costs

ReEDS

Why did we choose it?

- Reputation
 - http://www.nrel.gov/analysis/reeds/related_pubs.html
- Configurable
 - Can run multiple scenarios
 - Used for Wind and Solar Expansions

Thermal Fleet Sensitivity

Overbuild?

- Most integration studies keep the thermal fleet constant across all scenarios
- This means there is excess capacity in high renewables scenarios
- We are interested in analyzing at least one additional thermal expansion that is optimized for the regional scenario

Why?

 We expect the thermal fleet expansion to be influenced by policy decisions on renewables

ReEDs Runs

Four runs based on the four ERGIS scenarios:

- A. No new renewables
- B. State RPS requirements
- c. Regional 30% wind and solar
- D. National 30% wind and solar

ReEDs Results – E.I. Capacity by Scenario

	Conventional Capacity (GW)						
Scenario	Nuclear	Coal	CC	CT/Boiler	Total		
No New Renewables	88	231	147	194	660		
State RPS	88	230	144	197	660		
Regional 30%	88	212	133	173	606		
National 30%	88	216	137	178	619		

Generator Working Group: Discussion

Canadian Working Group

Canadian Working Group: April 17

- There are significant transactions between the northern states and Canada
- Accurately capturing these relationships is critical to a successful study.

Approach – IESO

- Full representation of IESO
- Worked closely with Ontario TRC members to:
 - Identify 2020 Ontario thermal fleet
 - Identify 2020 Ontario renewables
 - Understand changing nature of interchange between regions
- Sources of data:
 - Simulated wind data: <u>http://www.powerauthority.on.ca/integrated-power-system-plan/simulated-wind-generation-data</u>
 - Ontario Long Term Plan: <u>http://www.powerauthority.on.ca/power-planning/reports/long-term-energy-plan</u>

Approach

- Full representation of Manitoba Hydro system within MISO region
- Converted average annual generation to:
 - Monthly energy limits for reservoirs
 - Fixed dispatch limits for run-of-river
- Approach and limits approved by TRC members from Manitoba Hydro

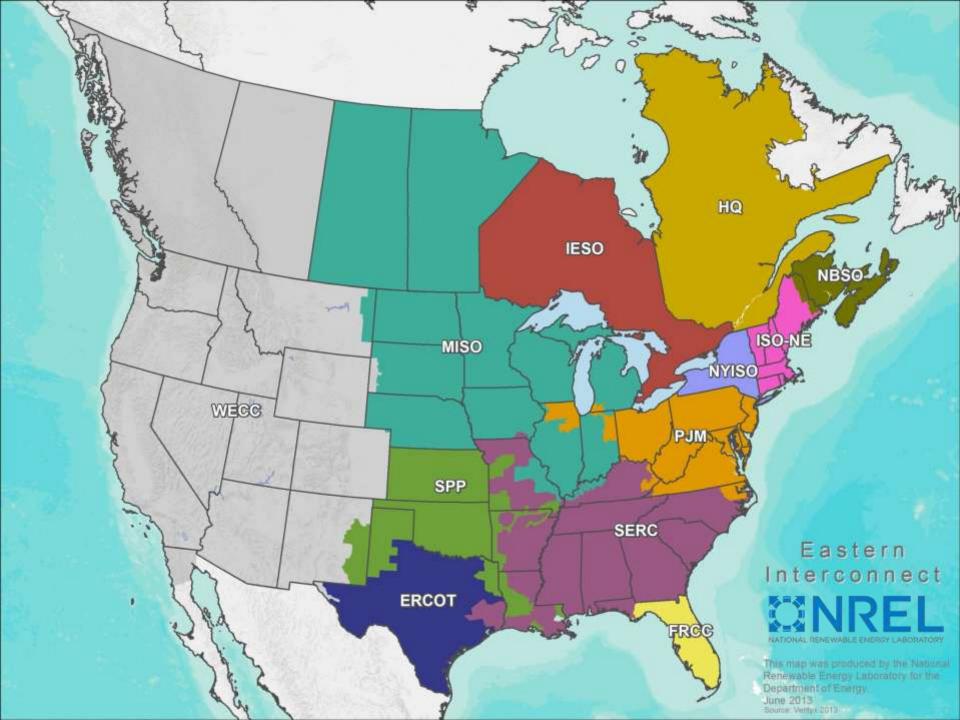
Manitoba Hydro Units	
Plant	GWh
Grand Rapids	1,500
Great Falls	750
Jenpeg	910
Kelsey	1,800
Limestone	7,600
Long Spruce	5,800
McArthur	380
Pine Falls	620
Seven Sisters	990
Slave Falls	490
Wuskwatim	1,341
Kettle	8,700
Pointe du Bois	600

Approach

Hydro-Quebec and Maritimes

- Proxy generator
- Development still in progress
 - ISO-NE
 - Synthetic Daily Diurnal Profiles
 - http://www.isone.com/markets/hstdata/dtld_net_intrchng/ext_intfrc/index. html
 - Other data points
 - NYISO?
 - HQ?
 - IESO?

Canadian Working Group: Discussion



Eastern Interconnect Model Update

Eastern Interconnect Model

- PLEXOS
- Starting point is EI database created by Energy Exemplar
 - MMWG load-flow case
 - Generator data from Energy Visuals
- Modifications to generator properties as previously described
- Small units at same plant aggregated up to 120 MW

Transmission

- Transmission data came from MMWG load flow case
- 62k nodes, 57k lines, voltages from distribution up to 765 kV
- Aggregation
 - Currently: intra-regional transmission aggregated and inter-regional transmission retained
 - Goal: increase transmission resolution to multiple zones per region

Generation and Load for 2010

Generation

- 6784 generation units
- 880 GW total non-wind capacity
- 28 GW total wind capacity

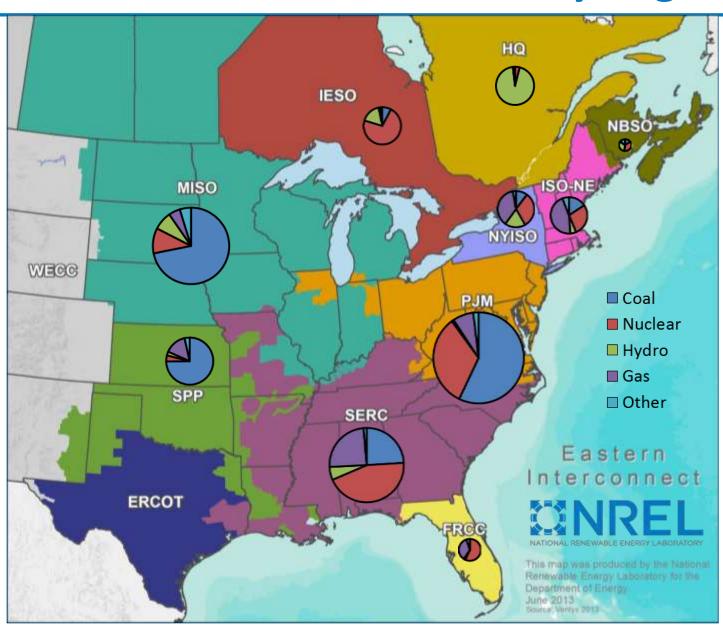
Load

- o 2,888 TWh in 2010
- 520 GW coincident peak demand

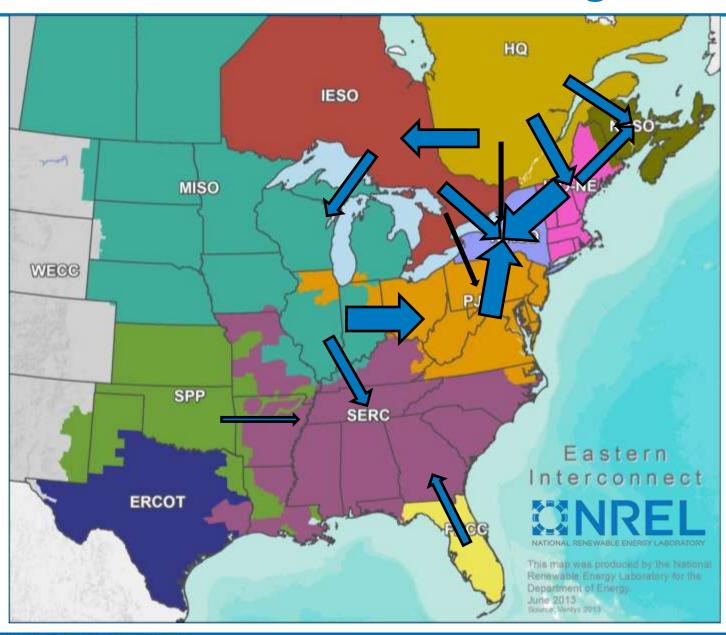
Ongoing Model Improvement

Exploring runtime reductions possible:

- Transmission representation
- Generator aggregation and commitment
- Number of reserves products


Implementing changes to:

- Generator properties
- Transmission data and limits
- Hydro limits


Example 2010 Run Details

- Day-ahead only
- 10 El regions plus import nodes for ERCOT and WECC
- Simplified reserves requirement for each El region
 - 2.5% of load
 - 10 minute response time
- Runtime was 12 days

2010 Run Results: Generation by Region

Run Results: Net Interchange Flows

Model Update: Discussion

Transmission Working Group

Please Help Us!

- Need to identify appropriate transmission for future years
- The Transmission Working Group is your opportunity to communicate your opinions to us and the other stakeholders
- Typically a 1-2 hour web-conference once a month

Transmission Vocabulary

Theoretical Nodal

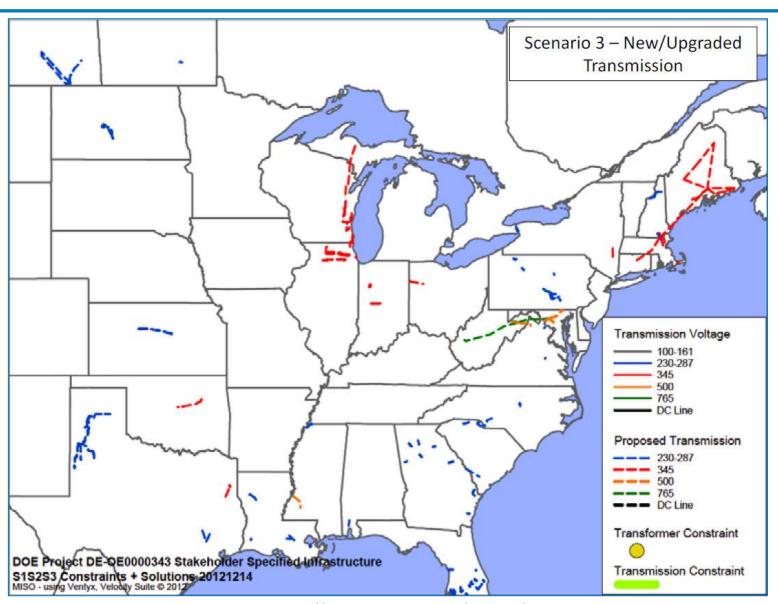
- Every bus, every voltage level
- Enforce every constraint

Feasible Nodal

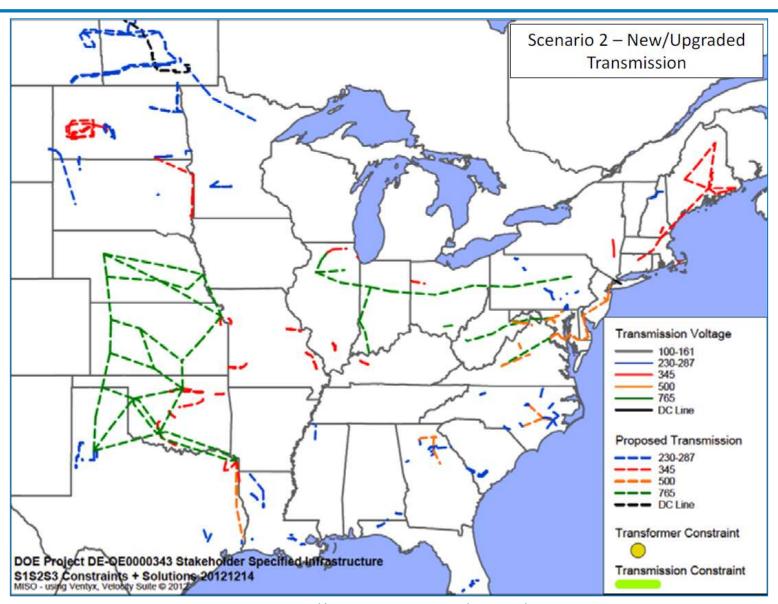
- Voltages above a certain threshold
- Enforce constraints known to be binding

Zonal

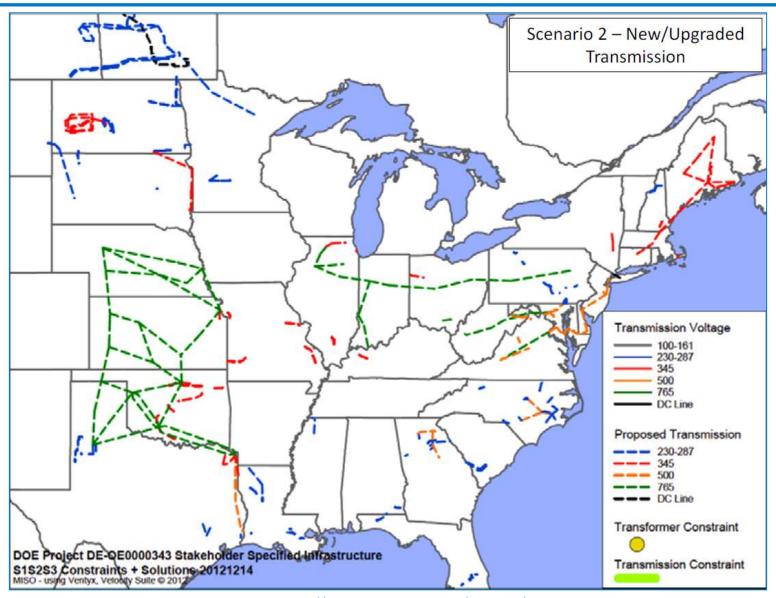
- Multiple zones within an RTO-sized region
- Aggregate transmission within each zone
- Enforce constraints on lines above threshold voltage connecting zones

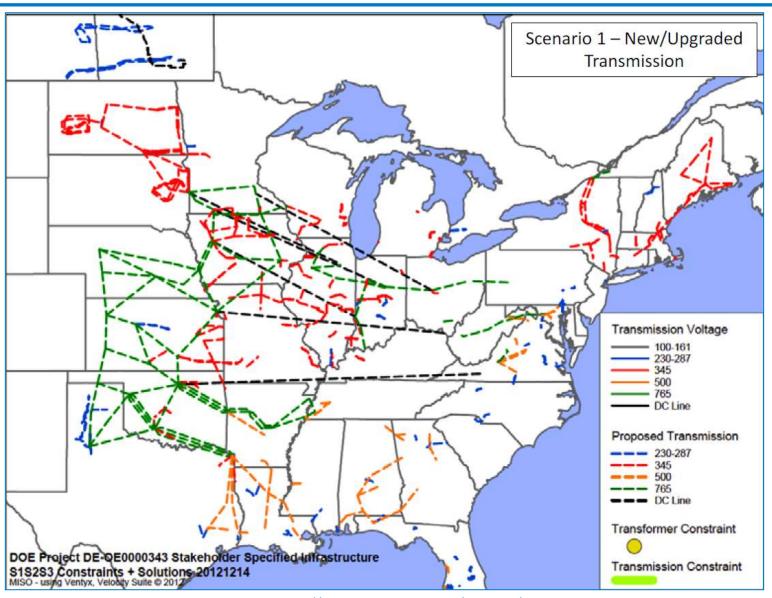

Regional

- Aggregate transmission within each region
- Enforce constraints on lines above threshold voltage connecting regions


Proposal: Use EIPC Transmission Builds

- EIPC had broad stakeholder participation
- EIPC scenarios (mostly) match ERGIS scenarios


ERGIS Base Case: Use EIPC Scenario 3


ERGIS State RPS Case: Use EIPC Scenario 2

ERGIS Regional Case: Use EIPC Scenario 2

ERGIS National Case: Use EIPC Scenario 1

Possible Zonal Definitions

- EIPC NEEM regions
- RTO zones
- Other suggestions?

EIPC NEEM Regions

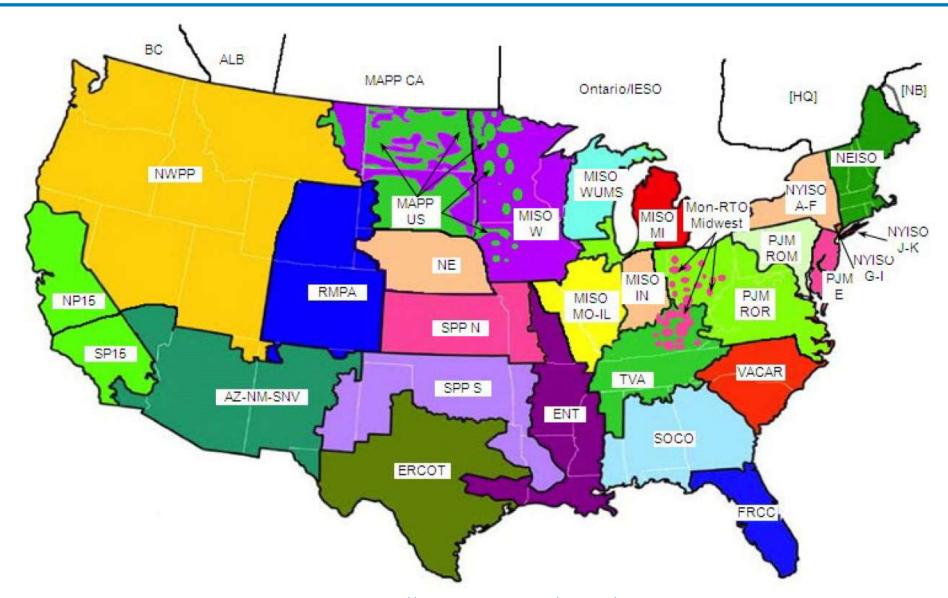
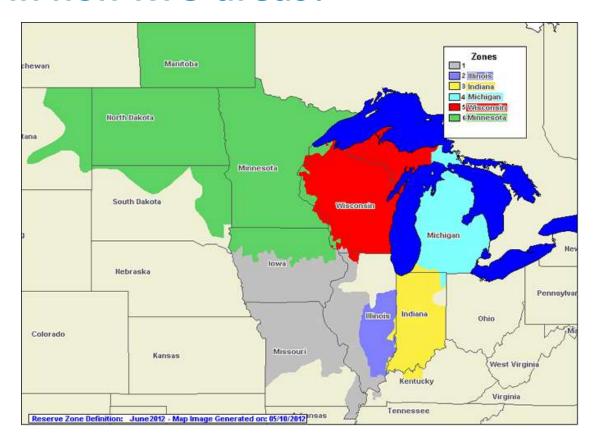



Image is from the EIPC Phase I Final Report: http://www.eipconline.com/uploads/Phase_1_Report_Final_12-23-2011.pdf

RTO Zones

- RTO zones in RTO areas
- Individual BAs in non-RTO areas?

Transmission Monitoring

Above 200 kV only

Of the 57k lines in the EI database, 7.5k are above
 200 kV

Which lines to monitor?

- All lines? (effect on runtime?)
- Selected lines only?
 - EIPC monitored ~800–1200 lines depending on scenario, based on stakeholders' experience

Transmission Working Group: Discussion

Mitigation Options Working Group

Mitigation Options Working Group

Goal:

 Identify and test operational tools that can address variability and uncertainty in the system

Sources of Variability and Uncertainty:

- Wind and solar
- Load
- Thermal fleet
- Seams

We Need Your Help

- Again, the Working Groups are your opportunity to communicate your opinions to us and the other stakeholders
- Typically a 1-2 hour web-conference once a month

Potential Mitigation Options

- Flexibility Reserve
- Reserve Sharing
- Interchange Frequency
- Unit Commitment
- Others?

Flexibility Reserve

- Plexos Implementation
 - Used in WWSIS 2
 - Flexibility Reserves procured in Day Ahead and 4-Hour-Ahead commitment periods
 - Capacity is released for energy in RT
- Potential for revisions to methodology

Flexibility Reserve

- Questions we might answer:
 - How does the inclusion of a flexibility reserve impact production costs across the scenarios?
 - How does the quantity of flexibility reserve impact product costs across scenarios?

Reserve Sharing

- Reserve sharing varies by region
- How could reserve sharing be enhanced?
 - SERC + FRCC?
 - ISO-NE + NYISO?
 - o PJM and VACAR?
- Interesting sensitivity?

Interchange Frequency

Questions we might answer:

- Does faster interchange reduce the impact variability and uncertainty?
- What are the production cost benefits of moving from:
 - Hourly to 15-minute
 - 15-minute to 5-minute

Unit Commitment

Questions we might answer:

- How much flexibility does a 4-hour ahead unit commitment provide to the system?
- Does 4-hour ahead unit commitment reduce the need for a flexibility reserve?

What are the most important sensitivities to run?

And how do we prioritize the sensitivities?

Mitigation Options: Discussion

Proposed

- Flexibility Reserve
- Reserve Sharing
- Interchange Frequency
- Unit Commitment

Your Ideas

- Other sensitivities?
- How to chose?

Working Group Meetings

- Transmission
 - Starting in July
 - Topics
 - Expansion
 - Modeling resolution
- Mitigation Options
 - Starting in July
 - Topics
 - Definition of options
 - Prioritization
 - Design for PLEXOS

Model runs

- Zonal 2010
- Zonal 2020 No Renewables Scenario
- Zonal 2020 State RPS Scenario
- Zonal 2020 National Scenario
- Zonal 2020 Regional Scenario

Critical steps

- Wind and solar profiles
- Transmission expansion

Fall TRC Meeting

- o September?
 - Suggestions for location and date?
- Solar Power International?
 - October 21-24
 - Chicago

Contact Us

Aaron.Bloom@nrel.gov

Aaron.Townsend@nrel.gov